Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.03.560628

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S) protein is essential in mediating membrane fusion of the virus with the target cells. Several reports demonstrated that SARS-CoV-2 S protein fusogenicity is reportedly closely associated with the intrinsic pathogenicity of the virus determined using hamster models. However, the association between S protein fusogenicity and other virological parameters remains elusive. In this study, we investigated the virological parameters of eleven previous variants of concern (VOCs) and variants of interest (VOIs) correlating with S protein fusogenicity. S protein fusogenicity was found to be strongly correlated with S1/S2 cleavage efficiency and plaque size formed by clinical isolates. However, S protein fusogenicity was less associated with pseudoviral infectivity, pseudovirus entry efficiency, and viral replication kinetics. Taken together, our results suggest that S1/S2 cleavage efficiency and plaque size could be potential indicators to predict the intrinsic pathogenicity of newly emerged SARS-CoV-2 variants.


Assuntos
Síndrome Respiratória Aguda Grave
2.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.06.17.448820

RESUMO

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and at least five variants of concerns (VOCs) have been considered as the hazardous SARS-CoV-2 variants to the human society. The newly emerging VOC, the B.1.617.2 lineage (delta variant), closely associates with a huge COVID-19 surge in India in Spring 2021. However, its virological property remains unclear. Here, we show that the B.1.617 variants are highly fusogenic and form prominent syncytia. Bioinformatic analyses reveal that the P681R mutation in the spike protein is highly conserved in this lineage. Although the P681R mutation decreases viral infectivity, this mutation confers the neutralizing antibody resistance. Notably, we demonstrate that the P681R mutation facilitates the furin-mediated spike cleavage and enhances and accelerates cell-cell fusion. Our data suggest that the P681R mutation is a hallmark characterizing the virological phenotype of this newest VOC, which may associate with viral pathogenicity. HighlightsO_LIP681R mutation is highly conserved in the B.1.617 lineages C_LIO_LIP681R mutation accelerates and enhances SARS-CoV-2 S-mediated fusion C_LIO_LIPromotion of viral fusion by P681R mutation is augmented by TMPRSS2 C_LI


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA